

PARSONSFEHR PEERSPLACEWORKS

Fremont Boulevard Safe and Smart Corridor Project

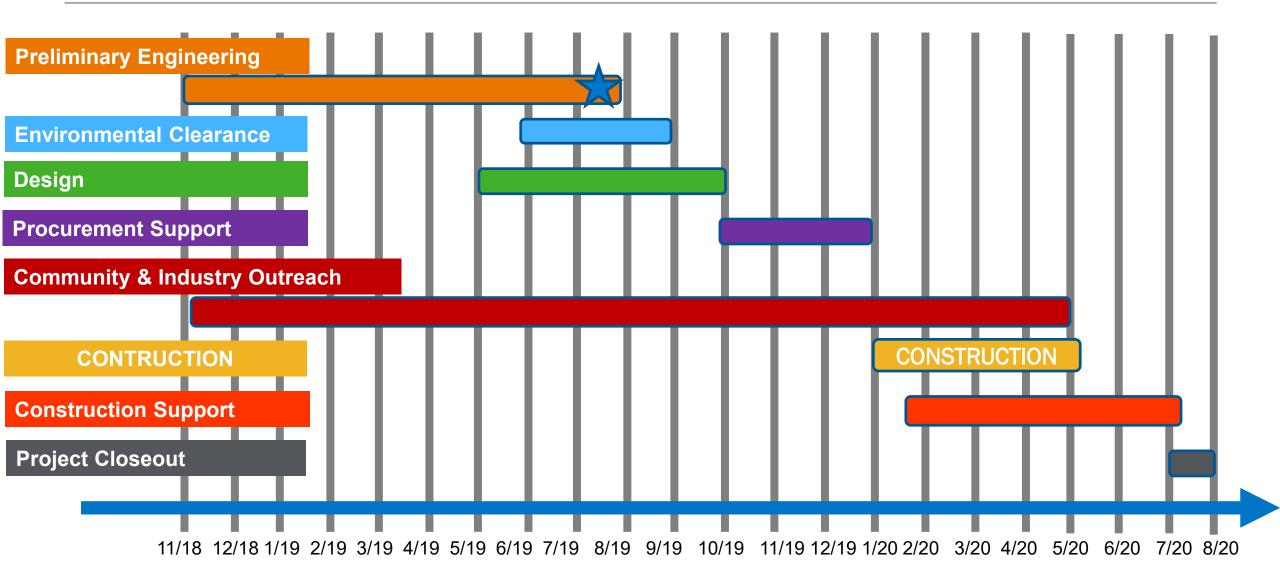
Community Meeting July 18, 2019

Agenda

- Introductions
- City Efforts
- Project Scope and Schedule
- Project Goals
- Existing Conditions
- Project Concepts
- Open House Stations
- Next Steps

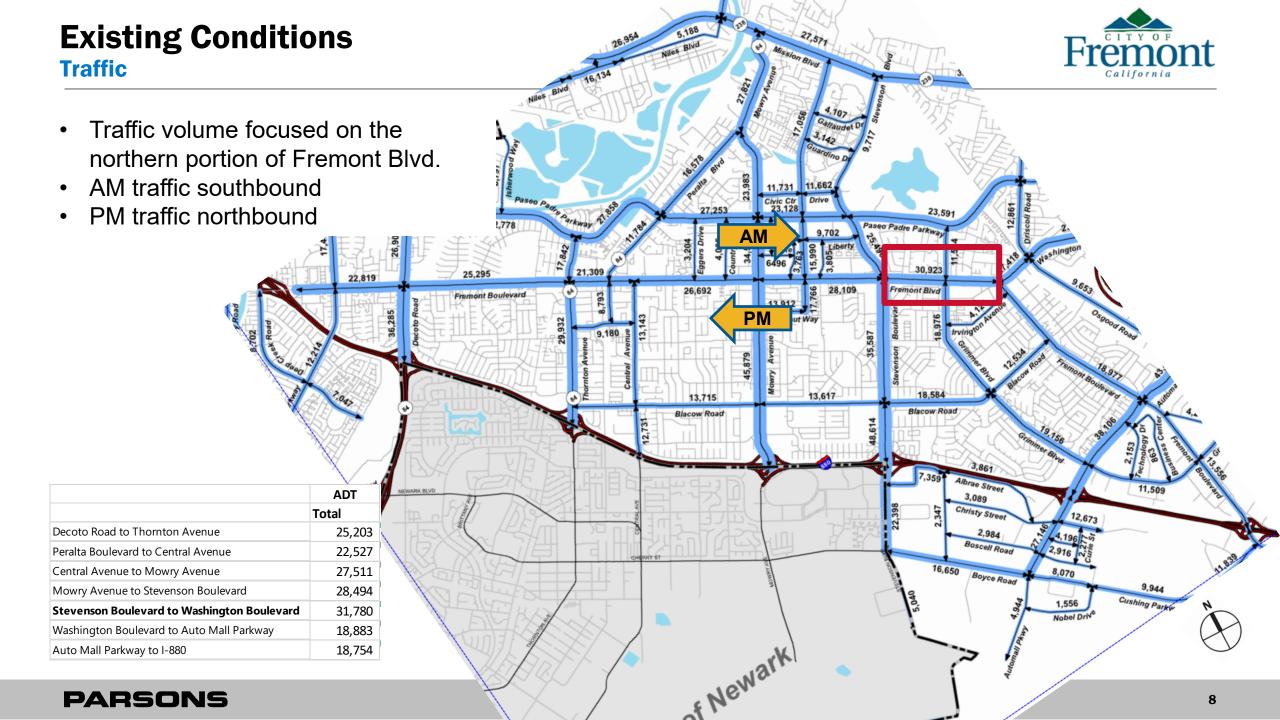
Funding for the work is granted from Measure BB, approved by Alameda County voters in 2014 and administered by the Alameda County Transportation Commission.

 Hans Larsen 	Director of Public Works	City of Fremont
 Sheila Marquises 	Snr. Transportation Engineer	City of Fremont
 Victoria Walker 	Transportation Engineer	City of Fremont
 Daniel Miller 	Transportation Engineer	City of Fremont
 Derek Pines 	Vice President	Parsons
 Allen Chen 	Senior Project Manager	Parsons
 Danny Murphy 	Senior Engineer/Planner	Fehr & Peers
 Charlie Knox 	Principal	PlaceWorks
 Janet Chang 	Associate	PlaceWorks


Current City Plans & Efforts

- General Plan
- Vision Zero Action Plan
- Mobility Action Plan
- Climate Action Plan
- Safe Routes to School Plans
- Systematic Safety Analysis Report
- Multimodal Arterial Plan (Alameda County)
- Bicycle Master Plan
- Pedestrian Master Plan

Project Scope and Schedule



- Improve safety and mobility for all modes
- Align with relevant safety and transportation plans and contribute to the City's sustainability goals
- Integrate project communication and management systems with similar City systems (e.g., FPD, IT)
- Provide accommodations for planned AC Transit and Alameda CTC projects along the corridor
- Engage with the community and stakeholders
- Ensure operations and maintenance needs are a key consideration when developing projects
- Make Fremont Boulevard an innovative "testbed"

Existing Conditions



Existing Conditions Transit / Rail

Existing Conditions Pedestrians

- Significant pedestrian activity (observed)
 - Four large schools
 - Many businesses
- Sidewalks (mostly) exist
- Crossings (mostly)
 controlled
- Many push buttons do not have Accessible Pedestrian Signals (APS)

Existing Conditions Bicyclists

Fremont california

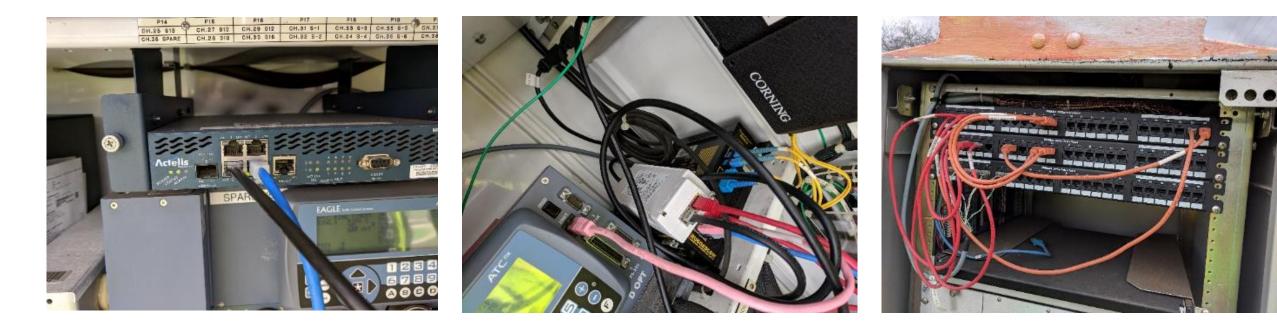
- Mostly Class II, some Class III bicycle facilities
- Some of Fremont Blvd. has bicycle detection
- 0.5% of trips citywide
- Planned for mostly Class IV separated bikeways

Class II Buffered Bike Lane

Class IV Separated Bikeway

Existing Conditions

- 510 collisions from 2013-2018
 - Highest number of pedestrian collisions citywide
- 7% resulted in fatal or severe injuries
- 20% involved a pedestrian or bicyclist
 - 19% of bicyclist collisions were due to "Improper Turning or Traffic Signals and Signs" at a controlled intersection
- Primary collision factors for intersection collisions were:
 - Traffic Signals and Signs (26%)
 - Unsafe Speed (16%)
 - Auto ROW Violation (10%)
- Pedestrian collisions occurred most at intersections
 - Leading collision factors were "Pedestrian Violations" and "Pedestrian ROW Violations"


Pedestrian Collisions (2009-2015)

Intersection	Collisions
Fremont Blvd. & Mowry Avenue	7
Fremont Blvd. & Chapel Way	7
Central Ave. & Dusterberry Way	6
Fremont Blvd. & Parish Way	4
Civic Center Dr. & Mowry Ave.	4

- Dept. of Information Technology Services manages hardware and software for traffic signal data communications
- City documents existing traffic signal communications equipment and interconnect

Project Concepts

Project Concepts

- 34 initial project concepts
- Meets one or more Vision Zero actions
- Meets one or more Project Objectives
 - MobilityInnovation
 - Safety
 Sustainability
- Prioritized as high, medium, or low
 - Benefit
 - Complexity
 - Cost
- Prioritization of locations
 - Areas of high speeds and collisions
 - Sensitive groups
 - Existing infrastructure

lier 1 (or high priority locations) shown above.

High Priority Project Concepts

Project Objectives:

- Passive Pedestrian Detection at Traffic Signals
- Speed Monitoring and Feedback
- Leading Pedestrian Intervals
- Supplemental Crosswalk Lighting

- Bicycle Detection & Confirmation
- Dynamic Speed Management
- Adaptive Traffic Signal System with Automated Traffic Performance Measures
- Accessible Pedestrian Signal Deployment

- Automated Video Analysis
- Adaptive Street Lighting
- Arterial Management/Decision Support Software
- Modernized Data Communications Network

Safety

- Incentivize safer auto speeds, give City tools to monitor / address specific speed-related issues
- Enhance controlled and uncontrolled pedestrian crossings with safety-focused technologies
- Enable enhanced monitoring of pedestrian activity and behavior, allowing the City to target enhancements as specific locations

Mobility

- Deploy technologies to assist mobilityimpaired users in the corridor
- Modernize the traffic signal system to achieve efficiency gains, reduce signalrelated delay and enhance mobility for all modes on the corridor
- Allow for transit reliability improvements being considered by AC Transit

- Expand Centerville Parking system with technology that will allow for dynamic pricing
- Provide dynamic wayfinding to available parking supply at Centerville station, allow for future possibility of on-line reservation
- Consider dynamic curb space management system for the on-street parking and loading that exists on the corridor.

Innovation & Sustainability

- Look into opportunities provided by license agreements with wireless carriers
- Standardize data communications on the corridor, allowing for current and future bandwidth needs
- Communicate signal system data in a format consistent with ITS standards, and with existing City protocols

Actions

Safety / Vision Zero	1	Provide incentives for safer auto speeds, provide the City with enhanced tools to monitor and address specific speed- related issues on the corridor
Safety / Vision Zero	2	Enhance controlled and uncontrolled pedestrian crossings with safety-focused technologies, while considering low- cost traditional enhancements as well.
Safety / Vision Zero	3	Enable enhanced monitoring of pedestrian activity and behavior, allowing the City to target enhancements as specific locations.
Mobility	4	Deploy technologies (traditional and innovative) to assist mobility-impaired users in the corridor
Mobility	5	Modernize the traffic signal system (detection and control) to achieve efficiency gains, reduce signal-related delay and enhance mobility for all modes on the corridor
Mobility	6	Allow for transit reliability improvements being considered by AC Transit
Parking		Expand beyond the planned paid parking and monitoring system at Centerville Station with technology that will allow for dynamic pricing
Parking	8	Provide dynamic wayfinding to available parking supply at Centerville station, allow for future possibility of on-line reservation
Parking	9	Consider dynamic curb space management system for the on-street parking and loading that exists on the corridor.
Data Communications	10	If possible, take advantage of license agreements with wireless carriers
Data Communications	11	Standardize data communications on the corridor, allowing for current and future bandwidth needs
Data Communications	12	Communicate signal system data in a format consistent with ITS standards, and with data communication standards for other City departments

Next Steps

- Project concepts report
- More outreach
- Design

Visit project website at: www.fremontsmartcorridor.org

